Qualification Awarded
The students who have graduated from the Department of Mathematics are awarded with a Master Degree in MATHEMATICS.
Specific Admission Requirements
1  Graduate Degree in acceptable fields,
2  Sufficient score from the National Academic Staff & Graduate Education Exam (at least 70) (ALES),
3  English proficiency (at least taking 55 from YDS)
Qualification Requirements
The programme consists of a minimum of 7 courses delivered within the graduate programme of the department and in related fields, one seminar course, and thesis, with a minimum of 21 local credits. Students must register for thesis work and the Specialization Field course offered by his supervisor every semester following the semester, in which the supervisor is appointed. A student who has completed work on the thesis within the time period, must write a thesis, using the data collected, according to the specifications of the Graduate School Thesis Writing Guide. The thesis must be defended in front of a jury.
Recognition of Prior Learning
Recognition of prior learning is at the beginning stage in the Turkish Higher Education System. Mugla Sıtkı Koçman University and hence the Department of Mathematics is no exception to this. However, exams of exemption are organised at the start of each term at the University for courses compulsory in the curriculum, such as Foreign Languages and Basic Computing. The students who have completed the learning process for these courses on his/her own or through other means, and believe that they have achieved the learning outcomes specified are given the right to take the exemption exam. The students who achieve a passing grade from these exams are held exempt from the related course in the curriculum, and this grade is entered into the transcript of the student.
History
The Department of Mathematics was founded as a major within the Faculty of Arts and Science in 1992. There are two formal education programs in the Department of Mathematics, primary and secondary education. Moreover, there are also Master's and PhD programs in our Department. The Department of Mathematics have five divisions: Algebra and Number Theory, Topology, Analysis and Theory of Functions, Geometry, Applied Mathematics.
Profile of the Programme
The Department of Mathematics offers graduate courses to its own graduate students and to graduate students in other departments. In the Mathematics Department the work done on theses is based on research. Depending on the topic selected, the thesis topic could involve research into algebra, differential geometry, functional analysis, numerical analysis, ordinary differential equations, partial differential equations, fuzzy and soft set theory, graph theory.
Program Outcomes
1 
To be able to develop their knowledge of theory and applications at master degree depending on the competencies acquired in undergraduate level. 
2 
To be able to recognize different problems encountered in mathematics and to be able to make studies for their solutions 
3 
To be able to formulate new solutions with scientific methods mostly based on analysis and synthesis. 
4 
To be able to carry out his/her works either independently or in groups within a project considering his/her knowledge on the field he/she works in a critical approach 
5 
To be able to continue his/her works considering social, scientific and ethical values. 
6 
To be able to follow scientific and social developments related to his/her field. 
7 
To be able to carry out his/her works within the framework of quality management, workplace safety and environmental awareness and to be able to present systematically his/her works using various methods like written, oral or visual. 
8 
To be able to use methods of accessing knowledge effectively in accordance with ethical values. 
9 
To be able to use knowledge in other disciplines by combining it with mathematical information 
10 
To be able to make activities in the awareness of need for lifelong learning. 
11 
To be able to make connections between mathematical and social concepts and produce solutions with scientific methods. 
12 
To be able to use his/her mathematical knowledge in technology. 
13 
Be able to set up and develope a solution method for a problem in mathematics independently, be able to solve and evaluate the results and to apply them if necessary. 
Exam Regulations & Assesment & Grading
The Master Degree programme consists of a minimum of seven courses, with a minimum of 21 national credits. Each course is assessed via a midterm exam and a final endofterm exam, with contributions of 40%, 60% respectively. Student must achieve a CGPA of at least 2.5 out of 4.00 and prepared and successfully defended a thesis are given Master Degree in the field of Mathematics.
Graduation Requirements
The Master Degree programme consists of a minimum of seven courses, with a minimum of 21 national credits, a qualifying examination, a dissertation proposal, and a dissertation. The seminar course and thesis are noncredit and graded on a pass/fail basis. The total ECTS credits of the programme is 240 ECTS. Students must register for thesis work and the Specialization Field course offered by his supervisor every semester following the semester, in which the supervisor is appointed. A student who has completed work on the thesis within the time period, must write a thesis, using the data collected, according to the specifications of the Graduate School Thesis Writing Guide. The thesis must be defended in front of a jury.
Occupational Profiles of Graduates
If the graduates have formation and get KPSS Marks, they can be appointed as a Mathematics theacher by M.E.B, or they can be work as a mathematics theacher at private establishment preparing students for various exams and special school. On computer sector they can work in diferent positions. The students who are in graduate education can be researcher and researcher assistants in universities.
Access to Further Studies
Graduates who succesfully completed Master degree may apply to both in the same or related disciplines in higher education institutions at home or abroad to get a position in academic staff or to governmental R&D centres to get expert position.
Mode of Study
Formal education
Programme Director
Prof.Dr. Mustafa GÜLSU
ECTS Coordinator
Asist Prof.Dr. Gamze YÜKSEL
Course Structure Diagram with Credits
1. Year
 1. Term
Course Unit Code

Course Unit Title

Course Type

Theory

Practice

ECTS

Print

MAT5090

Seminar

Required

0

2

6


MAT5501

DYNAMIC SYSTEMS IN TIME SCALES I

Elective

3

0

6


MAT5503

FUZZY MATHEMATICS

Elective

3

0

6


MAT5505

ALGEBRA I

Elective

3

0

6


MAT5507

SCIENTIFIC CALCULATION AND PROGRAMMING I

Elective

3

0

6


MAT5509

HYDRODYNAMICS AND APPLICATIONS

Elective

3

0

6


MAT5511

LINEAR ALGEBRA

Elective

3

0

6


MAT5513

MODULE THEORY

Elective

3

0

6


MAT5515

DIFFERENTIAL GEOMETRY

Elective

3

0

6


MAT5517

INTRODUCTION TO RIEMANN GEOMETRY

Elective

3

0

6


MAT5519

NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Elective

3

0

6


MAT5521

DOCUMENTATION BY LATEX

Elective

3

0

6


MAT5523

COMPLEX ANALYSIS

Elective

3

0

6


MAT5525

REEL ANALYSIS

Elective

3

0

6


MAT5527

TOPOLOGICAL VECTOR SPACES I

Elective

3

0

6


MAT5529

INTRODUCTION TO HOMOLOGY ALGEBRA

Elective

3

0

6


MAT5531

ORDINARY DIFFERENTIAL EQUATIONS

Elective

3

0

6


MAT5533

TOPOLOGY

Elective

3

0

6


MAT5535

INTRODUCTION TO ALGEBRAIC GEOMETRY I

Elective

3

0

6


MAT5537

INTRODUCTION TO ALGEBRAIC TOPOLOGY I

Elective

3

0

6


MAT5539

TOPOLOGICAL CONTINUITY

Elective

3

0

6


MAT5541

COMMUNICATION NETWORKS AND VULNERABİLİTY

Elective

3

0

6


MAT5543

DISTANCE CONCEPT IN GRAPHS

Elective

3

0

6


MAT5545

DIFFERENCE EQUATIONS I

Elective

3

0

6


MAT5547

MATRIX THEORY

Elective

3

0

6


MAT5549

ALGORITHMIC APPROXIMATION PROPERTY TO GRAPH THEORY

Elective

3

0

6


MAT5551

THEORY AND APPLICATIONS OF NUMERICAL ANALYSIS

Elective

3

0

6


MAT5553

SPECIFIC FUNCTIONS AND APPROXIMATION PROPERTIES

Elective

3

0

6


MAT5555

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS

Elective

3

0

6


MAT5557

APPROXIMATE SOLUTIONS OF INTEGRAL AND INTEGRODIFFERENTIAL EQUATIONS

Elective

3

0

6


MAT5559

ADVANCED THEORY OF NUMBERS

Elective

3

0

6


MAT5561

APPLIED MATHEMATIC METHODS

Elective

3

0

6


MAT5563

GRAPH THEORY I

Elective

3

0

6


MAT5565

PARTIAL DIFFERENTIAL EQUATIONS I

Elective

3

0

6


MAT5567

FOURIER ANALYSIS AND APPROXIMATION PROPERTIES

Elective

3

0

6


MAT5569

EUCLIDIAN AND NONEUCLIDIAN GEOMETRIES

Elective

3

0

6


MAT5570

INTRODUCTION TO FINITE FIELDS

Elective

3

0

6


MAT5571

Homotopi Teorisi II

Elective

3

0

6


MAT5572

THEORY OF ALGEBRAS

Elective

3

0

6


MAT5573

Cebirsel Topolojiden Seçme Konular

Elective

3

0

6


MAT5576

GROUP THEORY

Elective

3

0

6


MAT5577

Hareket Geometrisi

Elective

3

0

6


MAT5578

STOCHASTIC DIFFERENTIAL EQUATIONS

Elective

3

0

6


MAT5579

Değişmeli Halkalar Teorisi

Elective

3

0

6


MAT5580

MATHEMATICAL METHODS IN HYDRODYNAMICS

Elective

3

0

6


MAT5581

Sonlu Cisimlerin Uygulamaları

Elective

3

0

6


MAT5582

DIFFERENTIAL EQUATIONS THEORY

Elective

3

0

6


MAT5583

SINGULAR INTEGRAL EQUATIONS AND APPLICATIONS

Elective

3

0

6


MAT5585

ELLIPTIC INTEGRALS AND ELLIPTIC FUNCTIONS

Elective

3

0

6


MAT5587

FUZZY SET THEORY

Elective

3

0

6


MAT5589

APPROXIMATION THEORY I

Elective

3

0

6


MAT5591

ABSTRACT MEASUREMENT THEORY I

Elective

3

0

6


MAT5599

ADVANCED SCIENTIFIC CALCULATION METHODS I

Elective

3

0

6


MAT5601

TENSOR GEOMETRY

Elective

3

0

6


MAT5603

ADVANCED DYNAMIC SYSTEMS IN TIME SCALES

Elective

3

0

6


MAT5605

ADVANCED ISSUES IN NUMERICAL ANALYSIS

Elective

3

0

6


MAT5607

CODING THEORY I

Elective

3

0

6


MAT5609

ALGEBRAIC GEOMETRY

Elective

3

0

6


MAT5611

UNREAL GEOMETRY

Elective

3

0

6


MAT5613

GRAPH THEORY AND APPLICATIONS

Elective

3

0

6


MAT5615

GENERALIZED TOPOLOGICAL SPACES

Elective

3

0

6


MAT5617

TOPOLOGICAL SPACES

Elective

3

0

6


MAT5619

CATEGORY THEORY

Elective

3

0

6


MAT5621

HOMOTOPY THEORY I

Elective

3

0

6


MAT5623

ALGEBRAIC TOPOLOGY

Elective

3

0

6


MAT5701

Specialization Field Course

Required

4

0

6


MAT6557

FINITE ELEMENTS METHOD I

Elective

3

0

6


      

1. Year
 2. Term
Course Unit Code

Course Unit Title

Course Type

Theory

Practice

ECTS

Print

MAT5502

FUZZY TOPOLOGICAL SPACES

Elective

3

0

6


MAT5504

FUZZY FUNCTIONS THEORY AND APPLICATIONS

Elective

3

0

6


MAT5506

DYNAMIC SYSTEMS IN TIME SCALES II

Elective

3

0

6


MAT5508

SPECIAL TOPICS IN LINEAR ALGEBRA

Elective

3

0

6


MAT5510

ALGEBRA II

Elective

3

0

6


MAT5512

SCIENTIFIC CALCULATION AND PROGRAMMING II

Elective

3

0

6


MAT5514

SPECIAL TOPICS IN REAL ANALYSIS

Elective

3

0

6


MAT5518

INTRODUCTION TO ALGEBRAIC GEOMETRY II

Elective

3

0

6


MAT5520

RIEMANN GEOMETRY

Elective

3

0

6


MAT5522

SPECIAL TOPICS IN DIFFERENTIAL GEOMETRY

Elective

3

0

6


MAT5524

NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS II

Elective

3

0

6


MAT5528

SET THEORY

Elective

3

0

6


MAT5530

FUNCTIONAL ANALYSIS

Elective

3

0

6


MAT5532

TOPOLOGICAL GROUPS

Elective

3

0

6


MAT5534

GRAPH ALGORITHMS AND OPTIMIZATION

Elective

3

0

6


MAT5536

ORIENTED GRAPHS

Elective

3

0

6


MAT5538

DENUMERABLE GRAPHS

Elective

3

0

6


MAT5540

NUMERICAL LINEAR ALGEBRA

Elective

3

0

6


MAT5542

INTRODUCTION TO ALGEBRAIC TOPOLOGY II

Elective

3

0

6


MAT5544

DIFFERENCE EQUATIONS II

Elective

3

0

6


MAT5546

GRAPH THEORY II

Elective

3

0

6


MAT5548

NUMERICAL ANALYSIS

Elective

3

0

6


MAT5550

PARTIAL DIFFERENTIAL EQUATIONS II

Elective

3

0

6


MAT5552

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS II

Elective

3

0

6


MAT5554

SPECEIFIC FUNCTIONS AND APPROXIMATION PROPERTIES II

Elective

3

0

6


MAT5556

TOPOLOGICAL VECTOR SPACES II

Elective

3

0

6


MAT5558

INTEGRAL TRANSFORMATIONS

Elective

3

0

6


MAT5560

DIFFERENTIABLE MANIFOLDS

Elective

3

0

6


MAT5562

FOURIER AND LAPLACE TRANSFORMATIONS

Elective

3

0

6


MAT5564

ADVANCED SCIENTIFIC CALCULATION METHODS II

Elective

3

0

6


MAT5566

FINITE ELEMENTS METHOD II

Elective

3

0

6


MAT5568

SPECIAL TOPICS IN APPLIED MATHEMATICS II

Elective

3

0

6


MAT5584

ALGEBRAIC NUMBERS THEORY

Elective

3

0

6


MAT5586

GROUP NOTATION

Elective

3

0

6


MAT5588

SPECIAL TOPICS IN ALGEBRAIC GEOMETRY

Elective

3

0

6


MAT5590

NONCOMMUTATIVE RINGS THEORY

Elective

3

0

6


MAT5598

SPECIAL TOPICS IN NUMERICAL ANALYSIS II

Elective

3

0

6


MAT5602

ABSTRACT MEASUREMENT THEORY II

Elective

3

0

6


MAT5604

ADVANCED PARTIAL DIFFERENTIAL EQUATIONS

Elective

3

0

6


MAT5606

NONLINEAR INTEGRAL AND INTEGRO DIFFERENTIAL EQUATIONS

Elective

3

0

6


MAT5608

APPLIED FUNCTIONAL ANALYSIS

Elective

3

0

6


MAT5610

PERTURBATION THEORY

Elective

3

0

6


MAT5612

FINITE ELEMENTS METHOD II

Elective

3

0

6


MAT5614

CODING THEORY II

Elective

3

0

6


MAT5616

ITERATION METHODS IN LINEAR AND NONLINEAR EQUATIONS

Elective

3

0

6


MAT5618

NUMERICAL SOLUTIONS IN HYDRODYNAMICS

Elective

3

0

6


MAT5620

SPECIAL TOPICS IN COMPLEX ANALYSIS

Elective

3

0

6


MAT5622

ADVANCED TOPOLOGY

Elective

3

0

6


MAT5624

LATTICE THEORY

Elective

3

0

4


MAT5625

INTRODUCTION TO HILBERT SPACES

Elective

3

0

4


MAT5702

Specialization Field Course

Required

4

0

6


MAT6502

ABSTRACT MEASUREMENT THEORY II

Elective

3

0

6


MAT6508

APPLIED FUNCTIONAL ANALYSIS

Elective

3

0

6


MAT6510

PERTURBATION THEORY

Elective

3

0

6


MAT6512

FINITE ELEMENTS METHOD II

Elective

3

0

6


      

2. Year
 1. Term
Course Unit Code

Course Unit Title

Course Type

Theory

Practice

ECTS

Print

MAT5703

Specialization Field Course

Required

4

0

6


MAT5801

Thesis Work

Required

0

0

24


      

2. Year
 2. Term
Course Unit Code

Course Unit Title

Course Type

Theory

Practice

ECTS

Print

MAT5704

Specialization Field Course

Required

4

0

6


      


Evaluation Questionnaires
Course & Program Outcomes Matrix
0  Etkisi Yok, 1  En Düşük, 2  Düşük, 3  Orta, 4  Yüksek, 5  En Yüksek
1. Year
 1. Term
Ders Adı  Py1  Py2  Py3  Py4  Py5  Py6  Py7  Py8  Py9  Py10  Py11  Py12  Py13 
Seminar  4  5  4  5  4  5  4  5  4  5  4  5  4 
DYNAMIC SYSTEMS IN TIME SCALES I  5  4  3  3  5  5  4  4  4  5  5  4  4 
FUZZY MATHEMATICS  5  4  4  3  3  3  4  4  3  5  3  4  4 
ALGEBRA I  5  4  4  3  4  2  3  3  3  5  4  3  4 
SCIENTIFIC CALCULATION AND PROGRAMMING I  5  5  4  3  5  3  5  2  4  5  5  4  2 
HYDRODYNAMICS AND APPLICATIONS  5  5  4  3  5  3  5  2  4  5  5  4  2 
LINEAR ALGEBRA  5  4  4  3  3  3  3  4  3  5  3  3  4 
MODULE THEORY  5  4  4  3  3  3  3  4  3  5  3  3  4 
DIFFERENTIAL GEOMETRY  5  4  2  3  5  5  4  4  4  5  5  4  5 
INTRODUCTION TO RIEMANN GEOMETRY  5  4  2  4  5  5  4  4  4  5  5  5  4 
NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS  5  5  4  3  5  3  5  2  4  5  5  4  2 
DOCUMENTATION BY LATEX  3  4  5  3  3  5  4  4  5  3  4  3  4 
COMPLEX ANALYSIS  4  5  4  3  5  4  3  5  4  5  4  3  5 
REEL ANALYSIS  4  5  4  3  5  4  3  5  4  5  4  3  5 
TOPOLOGICAL VECTOR SPACES I  5  4  4  3  4   3  4  3  5  4  3  4 
INTRODUCTION TO HOMOLOGY ALGEBRA  5  4  4  5  3  4  5  4  3  5  4  4  4 
ORDINARY DIFFERENTIAL EQUATIONS  5  4  2  4  5  5  4  4  4  5  5  5  4 
TOPOLOGY  5  4  4  3  4  3  3  4  3  5  4  3  4 
INTRODUCTION TO ALGEBRAIC GEOMETRY I  5  4  4  3  2  3  3  4  5  4  3  3  4 
INTRODUCTION TO ALGEBRAIC TOPOLOGY I  5  4  4  3  4  2  3  4  3  5  4  3  3 
TOPOLOGICAL CONTINUITY  5  4  4  3  4  3  3  4  3  5  4  3  4 
COMMUNICATION NETWORKS AND VULNERABİLİTY  5  4  3  5  5  5  4  4  4  5  5  5  4 
DISTANCE CONCEPT IN GRAPHS  5  4  3  5  5  5  4  4  4  5  5  5  4 
DIFFERENCE EQUATIONS I  5  4  2  3  5  5  4  4  4  5  5  5  4 
MATRIX THEORY  5  4  2  5  4  5  4  4  4  5  5  5  4 
ALGORITHMIC APPROXIMATION PROPERTY TO GRAPH THEORY  5  4  3  5  5  5  4  4  4  5  5  5  4 
THEORY AND APPLICATIONS OF NUMERICAL ANALYSIS  5  4  2  5  5  5  4  4  4  5  5  4  4 
SPECIFIC FUNCTIONS AND APPROXIMATION PROPERTIES  5  5  4  2  4  3  5  2  3  5  4  3  4 
NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS  5  4  2  5  5  5  4  4  4  5  5  5  4 
APPROXIMATE SOLUTIONS OF INTEGRAL AND INTEGRODIFFERENTIAL EQUATIONS  5  4  2  5  5  4  4  4  4  5  4  4  4 
ADVANCED THEORY OF NUMBERS  5  4  4  3  4  2  3  4  3  5  4  3  3 
APPLIED MATHEMATIC METHODS  5  4  3  5  4  5  4  4  4  5  5  4  4 
GRAPH THEORY I  5  4  3  5  5  5  4  4  4  5  5  5  4 
PARTIAL DIFFERENTIAL EQUATIONS I  5  5  2  5  4  4  4  4  4  5  3  5  5 
FOURIER ANALYSIS AND APPROXIMATION PROPERTIES  5  5  4  2  4  4  5  2  3  5  4  3  4 
EUCLIDIAN AND NONEUCLIDIAN GEOMETRIES  5  4  2  5  5  5  4  4  4  5  5  4  4 
INTRODUCTION TO FINITE FIELDS  5  4  3  4  5  4  3  4  5  4  3  5  4 
Homotopi Teorisi II  5   4  4  5  5  3  3  4  4  4  5  5 
THEORY OF ALGEBRAS  4  3  3  4  5  5  5  3  3  3  4  4  5 
Cebirsel Topolojiden Seçme Konular  4  4  3  5  3  4  4  4  4  3  3  3  3 
GROUP THEORY  5  4  5  3  4  5  4  4  5  4  3  4  5 
Hareket Geometrisi  4  5  5  5  5  4  4  4  3  3  4  4  4 
STOCHASTIC DIFFERENTIAL EQUATIONS  5  4  5  4  3  5  4  5  4  3  5  4  5 
Değişmeli Halkalar Teorisi  4  4  4  5  5  5  5  3  3  3  3  4  4 
MATHEMATICAL METHODS IN HYDRODYNAMICS  3  4  5  4  3  5  4  5  3  3  3  4  5 
Sonlu Cisimlerin Uygulamaları  5  5  5  5  4  4  4  5  5  3  3  4  4 
DIFFERENTIAL EQUATIONS THEORY  4  4  4  4  3  3  4  5  5  4  5  3  3 
SINGULAR INTEGRAL EQUATIONS AND APPLICATIONS  5  5  4  4  3  3  5  5  4  4  3  3  5 
ELLIPTIC INTEGRALS AND ELLIPTIC FUNCTIONS  4  4  3  3  5  5  4  4  5  5  3  3  5 
FUZZY SET THEORY  4  4  3  3  5  4  5  3  4  5  3  3  4 
APPROXIMATION THEORY I  4  3  4  3  4  5  5  3  3  4  5  5  4 
ABSTRACT MEASUREMENT THEORY I  5  5  4  4  3  3  5  5  4  4  3  3  5 
ADVANCED SCIENTIFIC CALCULATION METHODS I  4  3  3  5  4  3  3  4  4  5  4  3  4 
TENSOR GEOMETRY  5  4  3  5  4  3  5  4  3  5  4  3  5 
ADVANCED DYNAMIC SYSTEMS IN TIME SCALES  4  5  5  5  5  4  4  4  3  3  3  3  3 
ADVANCED ISSUES IN NUMERICAL ANALYSIS  5  5  3  4  5  4  3  3  3  4  5  4  3 
CODING THEORY I  5  3  4  3   5  4  3  4  3  3  4  5 
ALGEBRAIC GEOMETRY  3  3  4  4  5  5  4  4  3  3  5  5  4 
UNREAL GEOMETRY  5  4  3  3  4  5  3  3  5  4  3  5  4 
GRAPH THEORY AND APPLICATIONS  5  5  5  3  4  2  3  4  2  5  4  4  4 
GENERALIZED TOPOLOGICAL SPACES  4  3  3  5  4  5  3  4  5  3  4  5  4 
TOPOLOGICAL SPACES  3  4  5  5  5  4  4  3  3  4  5  4  3 
CATEGORY THEORY  5  4  2  5  5  5  4  4  4  5  5  4  5 
HOMOTOPY THEORY I  5  4  4  4  5  3  4  4  3  3  3  3  4 
ALGEBRAIC TOPOLOGY  4  3  5  3  5  4  5  3  4  5  4  5  4 
Specialization Field Course  5  4  4  5  4  5  4  5  4  4  5  4  5 
FINITE ELEMENTS METHOD I  5  4  3  5  4  3  5  4  3  5  4  3  5 
             

1. Year
 2. Term
Ders Adı  Py1  Py2  Py3  Py4  Py5  Py6  Py7  Py8  Py9  Py10  Py11  Py12  Py13 
FUZZY TOPOLOGICAL SPACES  5  4  4  3  4  5  5  4  3  4  4  3  3 
FUZZY FUNCTIONS THEORY AND APPLICATIONS  5  4  4  5  5  5  5  4  3  5  5  5  5 
DYNAMIC SYSTEMS IN TIME SCALES II  5  4  2  3  5  5  4  4  4  5  5  4  4 
SPECIAL TOPICS IN LINEAR ALGEBRA  5  4  4  3  3  3  3  4  3  5  3  4  3 
ALGEBRA II  5  4  4  3  4  3  3  3  3  5  4  3  4 
SCIENTIFIC CALCULATION AND PROGRAMMING II  5  4  3  5  5  5  4  4  4  5  5  4  5 
SPECIAL TOPICS IN REAL ANALYSIS  5  4  4  3  4  2  3  4  3  5  4  3  4 
INTRODUCTION TO ALGEBRAIC GEOMETRY II  5  4  4  3  3  3  3  4  3  3  3  3  4 
RIEMANN GEOMETRY  5  4  2  3  5  5  4  4  4  5  5  5  4 
SPECIAL TOPICS IN DIFFERENTIAL GEOMETRY  5  4  2  3  5  5  4  4  4  5  5  5  4 
NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS II  5  5  4  3  5  3  5  2   5  5  4  2 
SET THEORY  5  4  4  1  1  1  1  4  3  1  1  1  4 
FUNCTIONAL ANALYSIS  5  4  4  3  4  2  3  4  3  5  4  3  4 
TOPOLOGICAL GROUPS  5  4  4  3  4  2  3  4  3  5  4  3  4 
GRAPH ALGORITHMS AND OPTIMIZATION  5  4  3  5  5  5  4  4  4  5  5  5  4 
ORIENTED GRAPHS  5  4  3  5  5  5  4  4  4  5  5  5  4 
DENUMERABLE GRAPHS  5  4  3  5  5  5  4  4  4  5  5  5  4 
NUMERICAL LINEAR ALGEBRA  5  4  2  5  5  5  4  4  4  5  5  4  5 
INTRODUCTION TO ALGEBRAIC TOPOLOGY II  5  4  4  3  4  2  3  4  3  5  4  3  3 
DIFFERENCE EQUATIONS II  5  4  2  3  5  5  4  4  4  5  5  5  4 
GRAPH THEORY II  5  4  3  5  5  5  4  4  4  5  5  5  4 
NUMERICAL ANALYSIS  5  4  2  5  5  5  4  4  4  5  5  4  4 
PARTIAL DIFFERENTIAL EQUATIONS II  5  5  2  5  4  4  4  4  4  5  3  5  5 
NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS II  5  5  4  3  5  3  5  2  4  5  5  4  2 
SPECEIFIC FUNCTIONS AND APPROXIMATION PROPERTIES II  5  5  4  2  4  3  5  2  3  5  4  3  4 
TOPOLOGICAL VECTOR SPACES II  5  4  4  3  4  2  3  4  3  5  4  3  4 
INTEGRAL TRANSFORMATIONS  4  5  3  5  4  5  3  4  4  4  4  3  5 
DIFFERENTIABLE MANIFOLDS  5  4  2  3  5  5  4  4  4  5  5  5  4 
FOURIER AND LAPLACE TRANSFORMATIONS  4  4  3  4  5  4  3  4  5  4  4  3  4 
ADVANCED SCIENTIFIC CALCULATION METHODS II  3  5  4  4  3  5  4  3  4  5  3  4  3 
FINITE ELEMENTS METHOD II  3  4  5  3  4  5  5  4  3  4  5  4  5 
SPECIAL TOPICS IN APPLIED MATHEMATICS II  5  5  4  4  3  3  4  5  5  4  3  4  5 
ALGEBRAIC NUMBERS THEORY   5  4  4  4  3  3  3  5  4  3  5  4 
GROUP NOTATION  5  4  3  3  4  5  4  3  3  4  5  4  3 
SPECIAL TOPICS IN ALGEBRAIC GEOMETRY  5  4  4  3  3  4  3  4  3  5  4  3  4 
NONCOMMUTATIVE RINGS THEORY  5  4  4  3  3  3  4  5  4  4  4  3  3 
SPECIAL TOPICS IN NUMERICAL ANALYSIS II  4  4  4  5  5  5  3  3  4  4  5  5  5 
ABSTRACT MEASUREMENT THEORY II  3  4  5  5  4  5  5  4  4  3  3  5  4 
ADVANCED PARTIAL DIFFERENTIAL EQUATIONS  3  5  4  4  5  3  3  5  3  4  5  4  4 
NONLINEAR INTEGRAL AND INTEGRO DIFFERENTIAL EQUATIONS  3  4  5  5  4  4  3  3  3  4  5  3  3 
APPLIED FUNCTIONAL ANALYSIS  4  4  4  3  3  3  5  5  5  4  4  4  4 
PERTURBATION THEORY  4  4  4  5  5  5  4  4  5  5  4  3  4 
FINITE ELEMENTS METHOD II  3  4  5  3  4  5  5  4  3  4  5  4  5 
CODING THEORY II  3  4  5  4  3  3  4  4  5  3  4  4  3 
ITERATION METHODS IN LINEAR AND NONLINEAR EQUATIONS  5  5  5  4  4  4  3  5  4  3  5  4  4 
NUMERICAL SOLUTIONS IN HYDRODYNAMICS  5  4  2  5  3  5  4  4  4  5  5  4  5 
SPECIAL TOPICS IN COMPLEX ANALYSIS  3  5  4  4  3  5  4  4  3  5  4  4  4 
ADVANCED TOPOLOGY  3  3  4  4  5  4  5  3  5  4  4  3  3 
LATTICE THEORY  5  4  4  1  1  1  1  4  3  1  1  1  4 
INTRODUCTION TO HILBERT SPACES  5  4  4  3  4  2  3  4  3  5  4  3  4 
Specialization Field Course  4  5  4  3  4  4  3  5  5  4  4  3  5 
ABSTRACT MEASUREMENT THEORY II  3  4  5  5  4  5  5  4  4  3  3  5  4 
APPLIED FUNCTIONAL ANALYSIS  4  4  4  3  3  3  5  5  5  4  4  4  4 
PERTURBATION THEORY  4  4  4  5  5  5   4  5  5  4  3  4 
FINITE ELEMENTS METHOD II  3  4  5  3  4  5  5  4  3  4  5  4  5 
             

2. Year
 1. Term
Ders Adı  Py1  Py2  Py3  Py4  Py5  Py6  Py7  Py8  Py9  Py10  Py11  Py12  Py13 
Specialization Field Course  4  5  4  3  4  4  3  5  5  4  4  3  5 
Thesis Work  4  5  4  3  4  4  3  5  5  4  4  3  5 
             

2. Year
 2. Term
Ders Adı  Py1  Py2  Py3  Py4  Py5  Py6  Py7  Py8  Py9  Py10  Py11  Py12  Py13 
Specialization Field Course  4  5  4  3  4  4  3  5  5  4  4  3  5 
             

